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Abstract
The thread-between-spaceships problem is analysed both in its ‘mild’ variant
(after some time the ships’ acceleration ceases and they coast at the same
constant speed, with respect to the lab frame), and in a special case of its
‘tough’ variant (the ships’ acceleration never ceases). It is pointed out that
in the special case of the tough variant the thread connecting spaceships may
never break, regardless of how close the ships’ speed approaches c.

1. A little special relativistic riddle

Consider a little riddle with pictures suitable to a primer of relativity.
Three small spaceships A,B and C drift freely in a region of space remote from other

matter, without rotation and relative motion, with B and C equidistant from A (figure 1). The
spaceships are at rest relative to an inertial frame S.

At one moment two identical signals from A are emitted towards B and C. On simultaneous
(with respect to S) reception of these signals the motors of B and C are ignited (figure 2) and
they accelerate gently along the straight line connecting them.

Let ships B and C be identical, and have identical acceleration programmes. Then each
point of B will have at every moment the same velocity as the corresponding point of C,
and thus any two corresponding points of the ships will always be at the same distance from
one another, all measured in S. Let us suppose that a fragile thread connects two identical
projections placed exactly at the midpoints of B and C before the motors were started. If the
thread with no stress is just long enough to span the initial distance in question, then as the
ships accelerate the thread travels with them (figure 3). Assume that the thread does not affect
the motion of the ships. Will the thread break when B and C reach a sufficiently high speed?

This fascinating riddle was devised by Dewan and Beran (1959) as an illustration of the
reality of the FitzGerald–Lorentz contraction and especially of the reality of stress effects
due to artificial prevention of the relativistic length contraction. Dewan and Beran’s original
formulation of the riddle was corrected by Evett and Wangsness (1960), and was recently
criticized by Cornwell (2005). Since the problem has been made famous by the famous
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Figure 1. Three small spaceships A, B and C at rest relative to an inertial frame S, with B and C
equidistant from A.

C
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B

Figure 2. The motors of ships B and C are ignited
simultaneously relative to S, and the ships accelerate
identically along the straight line connecting them.

Figure 3. As B and C accelerate, the thread spanning
between the midpoints of the ships before the motors
were started travels with them, keeping its initial length.

physicist John Bell (1976), it is now widely known as Bell’s problem or Bell’s spaceship
paradox. In the ‘tough’ variant of the problem, the acceleration of ships B and C may never
cease and their speed may increase indefinitely approaching c, as measured in S (Dewan and
Beran 1959, Bell 1976, Gershteı̆n and Logunov 1998, Flores 2005, 2008). In its ‘mild’ variant,
at an instant of the S time the ships’ acceleration ceases and they coast with the same constant
velocity as measured in S (Dewan 1963, Evett 1972, Tartaglia and Ruggiero 2003, Matsuda
and Kinoshita 2004, Styer 2007).

According to the testimony of John Bell (1976), a polemic over this old problem that was
started once between him and a distinguished experimental physicist in the CERN canteen
was eventually passed on to a significantly broader forum for arbitration: the CERN theory
division. A clear consensus emerged, testifies Bell, that the thread would not break.

It is now accepted, however, that the answer is wrong. The elementary explication, in
Bell’s formulation, runs as follows: ‘if the thread is just long enough to span the required
distance initially, then as the rockets speed up, it will become too short, because of its need
to FitzGerald contract, and must finally break. It must break when, at a sufficiently high
velocity, the artificial prevention of the natural contraction imposes intolerable stress’ (Bell
1976, emphasis added).

The purpose of the present note is to point out that the accepted solution to the riddle
(the thread will break when the ships reach a sufficiently high speed), is generally wrong.
More precisely, while the accepted solution is correct for the mild variant of the problem, it is
generally wrong for its tough variant. In our analysis, we in no way question Einstein’s special
theory of relativity or the reality of Dewan–Beran stresses that develop in a body which is
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constrained to move in such a manner that its dimensions are fixed with respect to an inertial
frame. We simply point out that according to special relativity in some cases the thread will
never break, regardless of how close the ships’ speed approaches c. The conclusion appears
to be new.

The Dewan–Beran–Bell problem with its apparent paradoxes and the rich physics hidden
behind it may be used as a vehicle for acquiring special relativistic mentality. So we believe
that the present note could be an intriguing reading for the student of relativity at the upper
undergraduate level. On the other hand, it is hoped that the reader who is less innocent of
relativity might also find some food for thought in it.

2. The mild variant

For the sake of completeness, we shall first discuss the mild variant of the riddle.
Let h denote the distance between any two corresponding points of ships B and C, as

measured in S. As is pointed out above, h is the time-independent quantity and equals the initial
distance between the two points, all relative to S. Let B and C stop accelerating simultaneously
at time t = t1 and eventually, after transient effects have died out, simultaneously reach the
same final speed v, again all with respect to S. What will be the distance h′

0 between any two
corresponding points of B and C (say between the tips of the projections connected by the
thread, shown in figure 3), as measured in the ships’ final rest frame S ′?

Thus we have to find the relationship connecting the distance, as measured in S ′, between
two material points that are at permanent rest relative to S ′, and that are uniformly moving
at the same velocity v along the same straight line relative to S, with the distance between
the two (uniformly moving) points as measured in S. Denote the two distances by L′

0 and Lv ,
respectively. All we have to know, except of course the Lorentz transformation (preferably in
its simplest form) and its meaning, is how to measure in an inertial frame the distance between
two material points that are uniformly moving with respect to this frame. As is well known,
a definition was provided by Einstein more than a century ago, in his first and fundamental
paper on special relativity. True, in the relativity paper, Einstein (1905) was speaking about
how to measure in the S frame the length of a rod in uniform motion along its length relative to
S. However, a little reflection reveals that we do not need the whole rod: its two end (material)
points are quite sufficient. According to Einstein’s simple and natural definition, we should
mark simultaneously (relative to S) instantaneous positions of the two uniformly moving points
on the straight material line at rest in S along which they move, and then measure the distance
between the marks by a measuring rod at rest relative to S. The sought relationship is well
known,

Lv = L′
0

√
1 − v2/c2, (1)

where, as Einstein pointed out, L′
0 is measured with the measuring rod already employed

which is now at rest relative to S ′.1

1 It should be mentioned that equation (1) by itself is not directly related to the FitzGerald–Lorentz contraction (or,
synonymously, with the relativistic length contraction) of a free uniformly moving rod, which requires the additional
equation L0 = L′

0, where L0 denotes the length of the same rod at rest in S, as measured in S. The last equation is
an immediate consequence of the principle of relativity, if the rod at rest in S is in the same internal state as that in
which the same rod is when at rest in S′ (cf Redžić 2008). The meaning of equation (1) is more general than that. It
applies whatever is found between the two material points at permanent rest in S′: empty space, a free (unstressed
or stressed) rod or a stretched (or compressed) string. All that matters for the validity of equation (1) is that the two
points are in uniform motion at the same speed v along the same straight line relative to S. So it could be misleading
to call equation (1) the ‘relativistic length contraction formula’ (cf Torretti (2006), and also Redžić (2008)).
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The above discussion immediately implies that the sought distance between any two
corresponding points of ships B and C, after they reach the persistent state speed v relative to
S is given by

h′
0 = h√

1 − v2/c2
, (2)

as measured of course in the ships’ final rest frame S ′. Now we ask a simple question: what
would be the length, as measured in S ′, of the same fragile thread connecting the midpoints of
ships B and C, if they were at rest in S ′ in the same configuration as that depicted in figure 1,
and if the thread were again with no stress just long enough to span the distance in question?
According to the principle of relativity, the length would be h. (In modern parlance, the
‘copy-paste’ procedure is in perfect agreement with the principle of relativity.) Thus the final
stretch of the thread, as measured in S ′, denoted by δ′

f , is given by

δ′
f = h

(
1√

1 − v2/c2
− 1

)
, (3)

in the persistent final state. Obviously, when v increases, δ′
f increases tending to infinity when

v → c. Thus, for a sufficiently high speed v the thread reaches its elastic limit and breaks.
Recall that S ′ is the ships’ final rest frame, after they reach the constant speed v relative to
S. From the corresponding Minkowski diagram it is clear that the ships do not come to rest
simultaneously: B stops first; also, B begins to decelerate first, all with respect to S ′.

It is interesting to compare the S and S ′ descriptions of the phenomenon.
In S ′, ships B and C are initially uniformly moving at the speed v along the same

straight line but in the backward, head to tail, direction. The thread connecting the ships’
midpoints then has the length h

√
1 − v2/c2, according to equation (1). Since, as is assumed

above, the thread with no stress has the length h in its rest frame, it follows that the thread
uniformly moving along its length at the speed v and having the length h

√
1 − v2/c2 is Lorentz

contracted, all relative to S ′. The thread is perfectly relaxed, with no elastic stress, also with
respect to S ′, since being Lorentz contracted is its natural state when it is in uniform motion
along its length with respect to S ′. (The thread is rigidly moving (cf Rindler 1991)2.) Then at
S ′ time t ′iB the motor of B is ignited, B decelerates and eventually it stops at time t ′sB . In the
meantime C continues to move uniformly at the speed v until the motor of C is ignited at time
t ′iC = t ′iB + (vh/c2)/

√
1 − v2/c2, then C goes through the deceleration programme identical

to that of B, and eventually C stops at time t ′sC = t ′sB + (vh/c2)/
√

1 − v2/c2. It is clear that
during the time interval between t ′iB and t ′sC the separation between the ships’ midpoints, i.e.
the length of the thread, continuously increases from h

√
1 − v2/c2 to h′

0 = h/
√

1 − v2/c2

due to a relative velocity between the ships with respect to S ′. It is also clear that the following
equation holds:

h′
0 = h

√
1 − v2/c2 + v�t ′, (4)

2 By the way, as Dewan and Beran (1959) pointed out, though in a somewhat imperspicuous way, the following
distances are not of the same sort: (a) the distance between two (unconnected or connected) material points that are
constrained to always move at the same instantaneous velocity (which can be time dependent) along the same line
with respect to an inertial frame of reference; (b) the distance between two ends of a rod rigidly moving along its
length at a constant speed (which involves the constancy of the rod’s rest length), with respect to the same frame.
Differentiating the two distances is essential in the explanation of the disappearance of the electric field of steady
currents in the framework of an elementary but non-trivial model (Zapolsky 1988), and elsewhere (Cavalleri and
Tonni 2000).
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where �t ′ = t ′iC − t ′iB = t ′sC − t ′sB = (vh/c2)/
√

1 − v2/c2, as Dewan (1963) pointed out3.
(Note the essential fact that v�t ′ tends to infinity when v → c, whereas h

√
1 − v2/c2 tends to

zero in the same limit.) Thus the thread initially uniformly moving with no stress eventually
comes to rest being stretched to δ′

f given by equation (3), with the relative stretch equal to
(1 − v2/c2)−1/2 − 1 in the persistent final state.

On the other hand, the length of the thread is always h with respect to S, it is a purely
spatial, time-independent quantity4. As the rockets speed up, the Dewan–Beran stress develops
in the thread due to the artificial prevention of its natural need to FitzGerald–Lorentz contract.
If the thread with no stress were in the uniform motion along its length at the final speed v, its
length would be h

√
1 − v2/c2, all relative to S. However, if the thread uniformly moving along

its length at the final speed v is constrained to have the length h, the stretch of the thread with
respect to its natural, FitzGerald–Lorentz-contracted length at that speed h

√
1 − v2/c2 is given

by h−h
√

1 − v2/c2, again all relative to S; when v → c, the corresponding relative stretch of
the thread (1 − v2/c2)−1/2 − 1 tends to infinity. Thus the thread breaks at a sufficiently high
final speed when the stress becomes intolerable.

The above discussion shows that the S and S ′ frames’ physical realities5, corresponding to
the same events in the Minkowski world, may be almost comically different. (This of course
does not contradict the principle of relativity.) While S blames the breaking of the thread on the
artificial prevention of the FitzGerald–Lorentz contraction, S ′ blames it on a relative velocity
between the rockets (due to lack of simultaneity), as Dewan (1963) pointed out in his fine
paper. However, the final outcome in the various physical realities is one and the same: the
thread breaks at a sufficiently high speed. Also, the S- and S ′-explanations of the cause of the
breakage are essentially identical: the relative stretch of the thread with respect to its natural,
i.e. free of stress, length in the corresponding persistent final state tends to infinity when the
corresponding steady speed of the rockets approaches c, leading to a stress that transcends the
thread’s elastic limit.

3. The tough variant

It appears, however, that the final outcome need not be fatal in the tough variant of the riddle.
In what follows by B and C we shall denote the tips of the projections at the (initial,

relative to S) midpoints of the ships B and C, respectively. Assume that B and C move along
the positive x-axis with identical constant proper accelerations a starting from rest at t = 0,
relative to S.6 Take that xB = xB0 when t = 0 and assume, for the sake of simplicity, that the

3 Equation (4) can be proved as follows. If the midpoint of ship B traverses a distance s′ from the instant t ′iB
until it stops, then the midpoint of ship C in the time interval between t ′iB and its own stopping traverses the
distance v�t ′ + s′, due to its uniform motion between t ′iB and t ′iC and also due to identical deceleration programmes.

Taking into account that at t ′iB the distance between the ships’ midpoints is h
√

1 − v2/c2, one obviously has

s′ + h′
0 = h

√
1 − v2/c2 + v�t ′ + s′, where h′

0 denotes of course the distance between the midpoints at t ′sC and
thereafter.
4 That a quantity which is purely spatial, time-independent, as measured in one inertial frame, may be time-
dependent as measured in another inertial frame is obvious from the corresponding Minkowski diagram. It is,
however, somewhat more difficult to imagine that there is such a feature at all, due to our Galilean instincts, inherited
from our pre-relativistic ancestors.
5 By the physical reality of an inertial observer we understand what Rindler (1991) calls the world map of that
observer, i.e. ‘a frozen instant in the observer’s spatial reference frame’. Note that figure 3 corresponds to a world
map and not to a world picture.
6 Note that the motion of a real relativistic rocket in space would necessarily involve a time-dependent rest mass of
the rocket (cf, e.g., Henry and Barrabes (1972), and also Rindler (1991, pp 96–7)), contrary to the assumption tacitly
made by Gershteı̆n and Logunov (1998). The equation of motion of a rocket analysed by the authors would be correct
only in the imaginary case when there is solely an external force field acting upon the rocket.
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initial distance (for t � 0) between B and C, i.e. the initial length h of the thread with no stress
connecting B and C, satisfies the condition

c2

a
> h. (5)

As is well known, B and C perform identical hyperbolic motions (except for the starting
point), their equations of motion being given by

xB =
√

c2t2 +

(
c2

a

)2

− c2

a
+ xB0, (6)

xC =
√

c2t2 +

(
c2

a

)2

− c2

a
+ xB0 − h, (7)

respectively, relative to S.
Our analysis simplifies somewhat if we introduce in our inertial frame S a new spatial

coordinate system such that

x∗ = x +
c2

a
− xB0, (8)

leaving other spatial coordinates untouched, y∗ = y, z∗ = z. In what follows by S∗ we
understand our frame S in which the starred coordinates x∗, y∗ and z∗ are used as the Cartesian
coordinates instead of the original x, y and z. Obviously, in S∗ the equations of motion
simplify to

x∗
B =

√
c2t2 +

(
c2

a

)2

, (9)

x∗
C =

√
c2t2 +

(
c2

a

)2

− h. (10)

Denoting by τ the proper time of B, taking τ = 0 when t = 0, we have (cf, e.g., Rindler 1991,
Styer 2007)

x∗
B(τ) ≡ x∗

Bτ = c2

a
cosh

(aτ

c

)
, (11)

t (τ ) ≡ tτ = c

a
sinh

(aτ

c

)
= x∗

Bτ

c
tanh

(aτ

c

)
. (12)

A little analysis reveals that the event on C that is simultaneous, with respect to the
instantaneous rest frame S ′

Bτ of B at the moment τ (of course all successive instantaneous rest
frames of B are assumed to be in standard configuration with the S∗ frame), with the event
(ctτ , x

∗
Bτ ) satisfies

(x∗
Cτ + h)2 −

(
c2

a

)2

=
[

tanh2

(
aτ

c

)]
x∗2

Cτ . (13)

The physically acceptable (positive) root of this equation is

x∗
Cτ =

⎡
⎣

√(
c2

a

)2

−
(

c2

a

)2

tanh2
(aτ

c

)
+ h2tanh2

(aτ

c

)
− h

⎤
⎦ cosh2

(aτ

c

)
, (14)
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with tCτ , lying on the same line of simultaneity, given by

tCτ = x∗
Cτ

c
tanh

(aτ

c

)
. (15)

The distance �′(τ ) between B and C, with respect to S ′
Bτ , is equal to7

�′(τ ) =
√

(x∗
Bτ − x∗

Cτ )
2 − c2(tτ − tCτ )2 = (x∗

Bτ − x∗
Cτ )cosh−1

(aτ

c

)
. (16)

From equations (16), (14) and (11) after a somewhat cumbersome but in every step simple
calculus we get

�′(τ ) = c2

a
+ h cosh

(aτ

c

)
−

√(
c2

a

)2

+ h2sinh2
(aτ

c

)
. (17)

Equation (17) obviously implies that the stretch of the thread δ′(τ ), as measured of course in
S ′

Bτ , is given by

δ′(τ ) = c2

a
− h + h cosh

(aτ

c

)
−

√(
c2

a

)2

+ h2sinh2
(aτ

c

)
. (18)

While the results in (17) and (18) are not new (Gleeson (2006) and Styer (2007, equation (29))),
the following interesting consequence of equation (18) is not pointed out in the literature, as
far as I am aware.

It can be easily verified that the stretch of the thread δ′ is an increasing function of τ ,
since condition (5) is satisfied. In the limit τ → ∞ we have

δ′ → δ′
f ≡ c2

a
− h, (19)

�′ → �′
f ≡ c2

a
, (20)

and thus both functions have horizontal asymptotes8.
Now it seems that for this type of spaceship motion we are in a position to give a somewhat

surprising solution to the riddle posed by Dewan and Beran almost half a century ago: will
the thread break?

The solution is: it depends.
On the basis of equation (19) we infer that the thread will never break if its critical stretch

δ′
c, as measured in the instantaneous rest frame of its front end point, for which it inevitably

breaks, is greater than the thread’s limiting stretch δ′
f ≡ c2/a − h. If so, the thread will

be under specific, ever increasing stress but unbroken. True, the thread will certainly break
sometime due to the fatigue of its material but that is another story.

What about the S frame account of the phenomenon? This is far from being an easy
matter. It is clear that a persistent stress that exists in the persistent final state of the thread
from the mild variant, must be of a quite different nature than transient (instantaneous) stress
corresponding to a transient state of the thread from the tough variant. This circumstance

7 Note that only the front end B of the thread is instantaneously at rest with respect to S′
Bτ at the instant τ ; its back

end C has a velocity in the direction of decreasing x′ at the same instant of the S′
Bτ time, moving farther away from

B, as is clear from the corresponding Minkowski diagram. (Only in the limit τ → ∞, the speed of C vanishes.)
So it could be misleading to call �′ the proper distance between B and C since the two material points are not both
instantaneously at rest relative to S′

Bτ .
8 Recall that the quantity c2/a may have peculiar meanings in special relativity (Taylor and French (1983), Rindler
(1991, p 38)).
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seems to be of crucial importance in distinguishing between the two variants, as considered
in the S frame. Otherwise, one could argue that the (instantaneous) relative stretch of the
thread tends to infinity when v → c in the tough variant too. As far as I can see, the only
way out of this predicament seems to be that the concept of the instantaneous relative stretch,
as considered in S, should be dismissed as meaningless in its actual form and replaced by a
different concept in the tough variant.

4. A comparison of the two variants

Some apparently simple questions may come to mind in relation to the above analyses. In
the first place, one may ask what is the difference between the mild and the tough variant of
the riddle. The obvious difference lies in the final stage of the motion: in the mild variant the
rockets eventually turn their engines off simultaneously and move uniformly, in the tough
variant they accelerate all the time, all relative to S. It seems somewhat odd that there may
appear a limiting stretch with respect to the instantaneously co-moving frame of the front
rocket in the tough variant, with ever accelerating rockets, whereas in the mild variant the
stretch may be arbitrarily great, despite the fact that there is a finite final speed of the rockets.
So it would be perhaps helpful to briefly analyse the mild variant in the framework of the tough
variant. In what follows we attempt an explanation of how the gigantic stretch may appear in
the mild restriction of the tough variant discussed above.

Assume that both rockets B and C turn their engines off simultaneously relative to S at
the instant tτ given by equation (12). Thus the instantaneous rest frame S ′

Bτ of the front rocket
B at the moment τ of B’s proper time from our tough variant becomes the S ′ frame from the
mild variant discussed in section 2. Let Vτ denote the speed of S ′

Bτ (i.e. of S ′) relative to S;
from equations (6), (9) and (12) we obtain

Vτ

c
= tanh

(aτ

c

)
, (21)

and consequently

γ (Vτ ) ≡ (
1 − Vτ

2
/
c2

)−1/2 = cosh
(aτ

c

)
. (22)

Since the S ′ and S∗ frames are in standard configuration, using equations (12) and (21) we
now have

t ′sB = 0, (23)

t ′sC = Vτh

c2
γ (Vτ ) = h

c
sinh

(aτ

c

)
(24)

and

�t ′ = t ′iC − t ′iB = t ′sC − t ′sB = h

c
sinh

(aτ

c

)
. (25)

The final length of the thread in S ′ is given by

h′
0 = h√

1 − Vτ
2/c2

= h cosh
(aτ

c

)
. (26)

From equations (26) and (17) it follows that in the time interval between t ′sB and t ′sC the thread
stretches for the length

h′
0 − �′(τ ) =

√(
c2

a

)2

+ h2sinh2
(aτ

c

)
− c2

a
. (27)
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On the other hand, from equations (21) and (25) it follows that the length Vτ�t ′ that the
midpoint of ship C traverses in uniform motion between t ′iB and t ′iC equals

Vτ�t ′ = h

[
sinh

(
aτ

c

)]
tanh

(
aτ

c

)
. (28)

Obviously, in the limit τ → ∞ the right-hand sides of equations (27) and (28) both tend to
infinity as h sinh(aτ/c). This implies that the stretching h′

0 − �′(τ ) during the time interval
between stopping of B and stopping of C, originating from a segment of the deceleration
stage of C’s motion, in the limit τ → ∞ approaches Vτ�t ′ and thus h′

0, as is clear from
equations (4) and (21).

It is perhaps worthwhile to point out that in the tough variant one has an endless sequence
of transient states of the thread, whereas in the mild variant a sequence of transient states ends
in a persistent state. Also, the part played in the processes by the ‘magic length’ c2/a remains
rather intriguing.
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